bsp;有一说一,那家中餐馆的味道一家不是奇怪的了。
而是非常的难吃。
“行吧,那我们现在就直接开始了。”
“今天咱们也不做训练了,就随便聊聊天,你们之中应该都对黎曼猜想有所了解吧?”
“有没有谁能简单的阐述一下。”
陈冰提出了自己的问题。
“嗯,苏牧这几次的成绩最好,你来说说看。”
“黎曼猜想??”苏牧有些愣神,“难不成这次世界赛又会考一出千禧难题?”
之前在数学国赛的时候,他们被那道庞加莱猜想简单变种题可以说是折磨的欲仙欲死,现在又来一个黎明猜想,怕是四个半小时完全不够用哦。
“没有,只是随便聊聊天...”
陈冰摇了摇头:
“不过也不好说,现在每年的题目难度都在加大,再加上这两年数学界对于黎明猜想的解析热情很高,说不定真的有可能碰上。”
“你随便讲讲就行,我又没指望你真的解出来,你要是能解出来,今年的菲尔兹奖和沃尔夫奖就是你的了。”
陈冰罕见的开了个玩笑。
但是几个队员们对这个玩笑只是嘴角抽了抽。
觉得这个玩笑有点冷。
苏牧叹了口气:“黎明猜想是关于素数的分布,是关于黎曼Zeta函数的零点分布的猜想。”
“黎曼Zeta函数有两种零点,一种是位于实数轴线上的零点,被称为平凡零点,另一种是位于其他复平面区域上的零点,被称为非平凡零点,目前数学家已经证明这些非平凡零点全部位于实部区间为0到1的复平面内。”
“然后黎明猜想的内容就是,这些非平凡零点全部位于实部为12的一条直线上。”
苏牧慢慢的说道,然后又补充了一句:“我觉得应该不会考这么变态的题目吧,数学家们都没有解出来的题目,难不成要我们这群高中生去做...”
“你这句话我就不赞同了。”
陈冰摇了摇头:
“数学家还不是慢慢的摸索上来的,你们现在已经能称得上是一个个小数学家了,哦,对了,你过段时间还得去参加化学奥赛对吧,那你现在还算是一个小化学家了。”
陈冰再次开了一个玩笑。
这下子其他几个学生脸上倒是露出了些许的笑意。
“我其实今天就是想给你们多聊聊这几个定理背后的故事。”
“那关于四色定理呢?戴彬彬你来说一说。”
“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色,用数学语言来说,就是将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。”
戴彬彬很清晰的给出了自己的答案:
“我们高中老师曾经提到过这个问题,最后好像是用计算机穷举证明的。”
陈冰点了点头,很是满意:
“以这个理论我基础,我给大家阐述一下黎曼猜想与M理论大融合。”
“假设现在有两根管子,一个记为1,一个记为2,它们代表两个....”
......